Transformations in oscillatory activity and evoked responses in primary somatosensory cortex in middle age: A combined computational neural modeling and MEG study
نویسندگان
چکیده
Oscillatory brain rhythms and evoked responses are widely believed to impact cognition, but relatively little is known about how these measures are affected by healthy aging. The present study used MEG to examine age-related changes in spontaneous oscillations and tactile evoked responses in primary somatosensory cortex (SI) in healthy young (YA) and middle-aged (MA) adults. To make specific predictions about neurophysiological changes that mediate age-related MEG changes, we applied a biophysically realistic model of SI that accurately reproduces SI MEG mu rhythms, containing alpha (7-14 Hz) and beta (15-30 Hz) components, and evoked responses. Analyses of MEG data revealed a significant increase in prestimulus mu power in SI, driven predominately by greater mu-beta dominance, and a larger and delayed M70 peak in the SI evoked response in MA. Previous analysis with our computational model showed that the SI mu rhythm could be reproduced with a stochastic sequence of rhythmic approximately 10 Hz feedforward (FF) input to the granular layers of SI (representative of lemniscal thalamic input) followed nearly simultaneously by approximately 10 Hz feedback (FB) input to the supragranular layers (representative of input from high order cortical or non-specific thalamic sources) (Jones et al., 2009). In the present study, the model further predicted that the rhythmic FF and FB inputs become stronger with age. Further, the FB input is predicted to arrive more synchronously to SI on each cycle of the 10 Hz input in MA. The simulated neurophysiological changes are sufficient to account for the age-related differences in both prestimulus mu rhythms and evoked responses. Thus, the model predicts that a single set of neurophysiological changes intimately links these age-related changes in neural dynamics.
منابع مشابه
Magnetoencephalographic and electroencephalographic studies of spontaneous activity and evoked responses in the sensorimotor system
.......................................................................................................................... 6 Introduction ................................................................................................................... 7 Review of literature ..................................................................................................... 8 Oscillatory brai...
متن کاملNeuronal response properties of somatosensory cortex (layer IV) are modulated following experience dependent plasticity in c-fiber depleted rats
Previous studies have shown that the receptive field properties, spontaneous activity and spatio-temporal interactions of low-threshold mechanical somatosensory cells in the barrel cortex are influenced by C-fibers. In this study, we examined the effect of C-fiber depletion on response properties of barrel cortex neurons following experience dependent plasticity. Methods: In this study, exte...
متن کامل\"DOMINANCY\" IN THE SECOND SOMATOSENSORY AREA REVEALED BY MAGNE TOENCEPHALOGRAPHY
The second somatosensory area (SlI) has been studied both by electrical evoked potentials24 and magnetoencephalography (MEG)5 Magnetic evoked fields of contralateral primary somatosensory and ipsilateral second somatosensory cortices of 12 normal subjects were recorded in response to median nerve electrical stimulation by means of a single magnetometer. We detected. in addition to the usua...
متن کاملGamma oscillatory amplitude encodes stimulus intensity in primary somatosensory cortex
Gamma oscillations have previously been linked to pain perception and it has been hypothesized that they may have a potential role in encoding pain intensity. Stimulus response experiments have reported an increase in activity in the primary somatosensory cortex (SI) with increasing stimulus intensity, but the specific role of oscillatory dynamics in this change in activation remains unclear. I...
متن کاملResponses of primary somatosensory cortical neurons to controlled mechanical stimulation.
The results of psychophysical studies suggest that displacement velocity may contribute significantly to the sensation of subcortical somatosensory neurons. The cortical correlates of these phenomena, however, are not known. In the present study the responses of rapidly adapting (RA) neurons in the forelimb region of cat primary somatosensory cortex (SI) to controlled displacement of skin and h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NeuroImage
دوره 52 3 شماره
صفحات -
تاریخ انتشار 2010